Mushrooms as brain food

Transparenz: Redaktionell erstellt und geprüft.
Veröffentlicht am und aktualisiert am

Reference Feng L., Cheah I., Ng M. et al. The association between mushroom consumption and mild cognitive impairment: a community-based cross-sectional study in Singapore. J Alzheimer's Dis. 2019;68(1):197-203. Study objective To examine the association between mushroom consumption and mild cognitive impairment (MCI) Design A community-based cross-sectional observational study Participants The study involved 663 participants (all 60 years or older) from the Diet and Healthy Aging (DaHA) study in Singapore, who collected a wide range of data at baseline from 2011 to 2017 as part of a cross-sectional study designs. The participants who had not been diagnosed with dementia or psychiatric disorders. Study Parameters Assessed Researchers used face-to-face questionnaires to...

Bezug Feng L., Cheah I., Ng M. et al. Der Zusammenhang zwischen Pilzkonsum und leichter kognitiver Beeinträchtigung: eine gemeinschaftsbasierte Querschnittsstudie in Singapur. J Alzheimers Dis. 2019;68(1):197-203. Studienziel Untersuchung des Zusammenhangs zwischen Pilzkonsum und leichter kognitiver Beeinträchtigung (MCI) Entwurf Eine gemeinschaftsbasierte Querschnittsbeobachtungsstudie Teilnehmer An der Studie nahmen 663 Teilnehmer (alle 60 Jahre oder älter) der Diet and Healthy Ageing (DaHA)-Studie in Singapur teil, die zu Studienbeginn von 2011 bis 2017 ein breites Spektrum an Daten im Rahmen eines Querschnittsstudiendesigns erhoben hatte. Die Teilnehmer bei denen weder Demenz noch psychiatrische Störungen diagnostiziert worden waren. Studienparameter bewertet Die Forscher verwendeten persönliche Fragebögen, um …
Reference Feng L., Cheah I., Ng M. et al. The association between mushroom consumption and mild cognitive impairment: a community-based cross-sectional study in Singapore. J Alzheimer's Dis. 2019;68(1):197-203. Study objective To examine the association between mushroom consumption and mild cognitive impairment (MCI) Design A community-based cross-sectional observational study Participants The study involved 663 participants (all 60 years or older) from the Diet and Healthy Aging (DaHA) study in Singapore, who collected a wide range of data at baseline from 2011 to 2017 as part of a cross-sectional study designs. The participants who had not been diagnosed with dementia or psychiatric disorders. Study Parameters Assessed Researchers used face-to-face questionnaires to...

Mushrooms as brain food

Relation

Feng L, Cheah I, Ng M, et al. The association between mushroom consumption and mild cognitive impairment: a community-based cross-sectional study in Singapore.J Alzheimer's Dis. 2019;68(1):197-203.

Study objective

Investigating the Association Between Mushroom Consumption and Mild Cognitive Impairment (MCI)

Draft

A community-based cross-sectional observational study

Participant

The study involved 663 participants (all 60 years of age or older) from the Diet and Healthy Aging (DaHA) study in Singapore, which collected a wide range of data using a cross-sectional study design at the start of the study from 2011 to 2017. The participants who had not been diagnosed with dementia or psychiatric disorders.

Study parameters assessed

Researchers used personal questionnaires to assess mushroom consumption. In the interview they asked the question: “How often do you eat the following?” One serving was ¼ plate, ¾ cup or approximately 150 grams. There were 4 different mushrooms in 6 different shapes.

Primary outcome measures

To assess cognitive status, researchers administered the Singapore Modified Mini-Mental State Examination (SM-MMSE) and a local version of the Clinical Dementia Rating (CDR) scale. They conducted further assessment with cognitive domains through a clinical assessment involving 2 consultant psychiatrists.

Key insights

Participants who consumed more than 2 servings of mushrooms per week were less likely to have MCI (OR = 0.43; 95% CI, 0.24-0.75,P= 0.003) compared to those who consumed less than 1 serving per week and those who consumed 1-2 servings per week; this remained statistically significant even after adjusting for demographic characteristics (age, gender, education), lifestyle (physical activities, social activities, cigarette smoking, alcohol consumption) and other medical conditions (hypertension, diabetes, heart disease and stroke).

Practice implications

Mushrooms have been used for food and medicine for centuries, with positive effects on human health well documented in studies. Many components of mushrooms have been shown in cell and rodent studies to promote brain health against neurodegenerative diseases. For example, a medicinal mushroom from Taiwan,Antrodia camphorataBeta-amyloid 1-42 (Aß1-42) has been shown to prevent Aß peptides from being deposited in the hippocampus, a known side effect of memory impairment in Alzheimer's patients.1

shiitake (Lentinula edodes) show properties that improve intestinal health with beta-glucans, naturally occurring polysaccharides. These beta-glucans can act as the main source of energy (carbon) for microbiota (such asBifidobacterium spp. andLactobacillus spp.) by stimulating their growth as they produce short-chain fatty acids (SCFAs). The role of SCFAs in the intestine is to maintain osmotic pressure in the intestine, which allows the normal function of the distal intestine along with the colonic epithelium.2Reports have shown that mushroom-derived beta-glucans can alter the gut microbiome and potentially reverse gut microbiota composition, such as: B. the reduced ratio of Firmicutes/Bacteroides.3.4This shift may help older adults with cognitive function, according to a 2017 study that found higher levels of Bacteroidetes are not beneficial and may be harmful.5

The well-known onesPorcini mushroomsCommonly called Porcini in the USA, it is said to contain the highest amount of ergothioneine.

But researchers in this Singapore study suggest that a compound found in most mushrooms, ergothioneine, is responsible for an associated reduction in MCI. Ergothioneine is named after the ergot fungus (Claviceps purpurea), from which it was first isolated in 1909. It is a sulfur-containing amino acid found in non-yeast fungi (mainly basidiomycetes) and some bacteria (Actinomycetales and cyanobacteria including spirulina,Arthrospira maxima6), but neither plants nor mammals.7Plants absorb ergothioneine from symbiotic associations with fungal mycelia and soil bacteria.8Humans and other mammals absorb it from these plants.7Once consumed, it has a transport protein, OCTN1,9and occurs in many human cells.

In vitro studies have suggested that ergothioneine is a powerful antioxidant, similar to glutathione, and may play a role in mitochondrial protection.10In contrast to glutathione, ergothioneine does not oxidize as easily and is therefore considered more stable.11Several studies report a protective effect on neurological tissue, and ergothioneine appears to be able to cross the blood-brain barrier.7In humans, a study has shown that ergothioneine is at its highest concentration at a young age and in teenagers12but decreases with increasing age. It is not known why older individuals have lower levels; it could be changes in food intake in older people or changes in expression of the transport protein gene.13Ergothioneine has also been shown to be lower in people with MCI.14In a transgenic nematodeCaenorhabditis elegansModel of amyloid-induced toxicity, ergothioneine added to the growth medium extended lifespan and resulted in less oxidative stress compared to those without ergothioneine (P<.0001).fifteenIn his article “Prolonging Healthy Aging: Vitamins and Proteins for Long Life”16Bruce Ames includes ergothioneine on a list of putative longevity vitamins, substances that are not needed for survival but that instead reduce the accumulation of long-term oxidative damage.

Researchers in Singapore are conducting a Phase 3 clinical trial in which participants will take a placebo or 25 mg of ergothioneine three times weekly for a total of 52 weeks. The process will be completed in 2021,17and should provide more details about the effectiveness of this compound. But until then, there are a variety of mushrooms that can be added to the dietary recommendations. The well-known onesPorcini mushroomsCommonly called Porcini in the USA, it is said to contain the highest amount of ergothioneine.18Non-mushroom foods with some ergothioneine (but still lower than the mushrooms) include pork liver; kidney, black and red beans; and oat bran.

Here is a list of edible and common medicinal mushrooms in order of ergothioneine content from highest to lowest, approximated according to the reports of some studies.19.20The use of these mushrooms as food offers many benefits and should be encouraged. However, production of ergothioneine in the nutraceutical industry is probably not far off using synthesisSaccharomyces cerevisiaeYeast.9

Common names Scientific name
Porcini mushrooms (porcini mushrooms, penny rolls) Porcini mushrooms
Yellow oysters Pleurotus citrinopileatus
Oyster (autumn) Pleurotus ostreatus
Lion's Mane (Pom Pom) Hericium erinaceus
Maitake (Chicken of the Forest) Grifola frondosa
shiitake* Lentinula edodes
Golden mushroom (Enoki, velvet foot) Flammulina velutipes
Reishi (Lingzhi) Ganoderma lucidum
Crimini (Cremini) Agaricus bisporus
White button Agaricus bisporus
chanterelle Cantharellus cibarius
Morel Morchella esculenta
Portabella Agaricus bisporus

Note: Ergothioneine has been abbreviated “ESH,” “ERG,” “LE,” and “Ergo” in various articles.

*Studies have reported mixed amounts of shiitake; For example, in a 2007 report, the values ​​were very low to non-existent.

  1. Phan CW, David P, Naidu M, Wong KH, Sabaratnam V. Therapeutisches Potenzial von kulinarischen Heilpilzen zur Behandlung neurodegenerativer Erkrankungen: Vielfalt, Metabolit und Mechanismus. Crit Rev Biotechnol. 2015;35(3):355-368.
  2. Xue.Z, Ma Q, Chen Y, et al. Strukturcharakterisierung löslicher Ballaststofffraktionen aus Pilzen Lentinula edodes (Berk.) Pegler und die Auswirkungen auf die Fermentation und die menschliche Darmmikrobiota in vitro. Food Res Int. 2020;129:108870.
  3. Xu X, Yang J, Ning Z, Zhang X. Lentinula edodes-abgeleitetes Polysaccharid verjüngt Mäuse in Bezug auf Immunantworten und Darmmikrobiota. Lebensmittelfunktion. 2015;6(8):2653-2663.
  4. Jayachandran M, Xiao J, Xu B. Eine kritische Überprüfung der gesundheitsfördernden Vorteile von Speisepilzen durch Darmmikrobiota. Int. J. Mol. Sci. 2017;18(9). pii:E1934.
  5. Manderino L., Carroll I., Azcarate-Peril MA, et al. Vorläufige Beweise für einen Zusammenhang zwischen der Zusammensetzung des Darmmikrobioms und der kognitiven Funktion bei neurologisch gesunden älteren Erwachsenen. J Int Neuropsychol Soc. 2017;23(8):700-705.
  6. Pfeiffer C, Bauer T, Surek B, Schömig E, Gründemann D. Cyanobakterien produzieren hohe Mengen an Ergothionein. Food Chem. 2011;129(4):1766-1769.
  7. Cheah IK, Halliwell B. Ergothioneine; antioxidatives Potenzial, physiologische Funktion und Rolle bei Krankheiten. Biochim Biophys Acta. 2012;1822(5):784-793.
  8. Servillo L, DʼOnofrio N, Balestrieri ML. Antioxidative Funktion von Ergothionein: von der Chemie zum kardiovaskulären therapeutischen Potenzial. J Cardiovasc Pharmacol. 2017;69(4):183-191.
  9. van der Hoek SA, Darbani B, Zugaj KE, et al. Engineering der Hefe Saccharomyces cerevisiae für die Produktion von L-(+)-Ergothionein. Front Bioeng Biotechnol. 2019;7:262.
  10. Weigand-Heller AJ, Kris-Etherton PM, Beelman RB. Die Bioverfügbarkeit von Ergothionein aus Pilzen (Agaricus bisporus) und die akuten Auswirkungen auf die antioxidative Kapazität und Biomarker von Entzündungen. Zurück Med. 2012;54 Suppl:S75-78.
  11. Agrawal D. Dhanasekaran M., Hrsg. Heilpilze Jüngste Fortschritte in Forschung und Entwicklung. Singapur: Springer Singapur; 2019:398.
  12. Kumosani TA. L-Ergothionein-Spiegel in roten Blutkörperchen gesunder Männer in der westlichen Provinz von Saudi-Arabien. Exp Mol Med. 2001;33(1):20-22.
  13. Sotgia S., Zinellu A., Mangoni AA, et al. Klinische und biochemische Korrelate der Serum-L-Ergothionein-Konzentrationen bei in Gemeinschaft lebenden Erwachsenen mittleren und höheren Alters. Plus eins. 2014;9(1):e84918.
  14. Cheah I, Feng L, Tang RMY, Lim KHM, Halliwell B. Ergothionein-Spiegel in einer älteren Bevölkerung nehmen mit dem Alter und dem Auftreten von kognitivem Verfall ab; ein Risikofaktor für Neurodegeneration? Biochem Biophys Res Commun. 2016;478(1):162–167.
  15. Cheah IK, Ng LT, Ng LF, et al. Hemmung der Amyloid-induzierten Toxizität durch Ergothionein in einem transgenen Caenorhabditis elegans-Modell. FEBS Lett. 2019;593(16):2139-2150.
  16. Ames BN. Gesundes Altern verlängern: Vitamine und Proteine ​​für ein langes Leben. Proc Natl Acad Sci USA. 2018;115(43):10836-10844.
  17. ClinicalTrials.gov. Untersuchung der Wirksamkeit von Ergothionein zur Verzögerung des kognitiven Rückgangs. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03641404. Abgerufen am 27. März 2020.
  18. Ey J, Schömig E, Taubert D. Nahrungsquellen und antioxidative Wirkung von Ergothionein. J Agric FoodChem. 2007;55(16):6466-6474.
  19. Kalaras MD, Richie JP, Calcagnotto A, Beelman RB. Pilze: Eine reiche Quelle der Antioxidantien Ergothionein und Glutathion. Lebensmittelchem. 2017;233:429-433.
  20. Bao HN, Ushio H, Ohshima T. Antioxidative Aktivitäten von Pilzen (Flammulina velutipes) Extrakt zu Großaugenthunfleisch zugesetzt: dosisabhängige Wirksamkeit und Vergleich mit anderen biologischen Antioxidantien. J FoodSci. 2009;74(2):C162-C169.