The antioxidant N-acetyl cysteine ​​improves sperm quality

Transparenz: Redaktionell erstellt und geprüft.
Veröffentlicht am und aktualisiert am

Reference Jannatifar R, Parivar K, Roodbari NH, Nasr-Esfahani MH. Effects of N-acetyl-cysteine ​​supplementation on sperm quality, chromatin integrity and levels of oxidative stress in infertile men. (Link removed). 2019;17(24). Study objective To determine the effects of supplementation with the antioxidant N-acetyl-cysteine ​​(NAC) on sperm quality, chromatin integrity and levels of oxidative stress in infertile men with abnormal semen parameters Design Three-month prospective, randomized, blinded clinical trial Participants Fifty men aged 25 to 40 years with Asthenoteratozoospermia, determined according to WHO criteria. Participants reported no previous impregnations and had partners without fertility problems. Patients with diseases and/or risk factors known to...

Bezug Jannatifar R., Parivar K., Roodbari NH, Nasr-Esfahani MH. Auswirkungen einer N-Acetyl-Cystein-Supplementierung auf die Spermienqualität, die Chromatinintegrität und das Ausmaß des oxidativen Stresses bei unfruchtbaren Männern. (Link entfernt). 2019;17(24). Studienziel Bestimmung der Auswirkungen einer Supplementierung mit dem Antioxidans N-Acetyl-Cystein (NAC) auf die Spermienqualität, die Chromatinintegrität und das Ausmaß des oxidativen Stresses bei unfruchtbaren Männern mit anormalen Samenparametern Entwurf Dreimonatige prospektive, randomisierte, verblindete klinische Studie Teilnehmer Fünfzig Männer im Alter von 25 bis 40 Jahren mit Asthenoteratozoospermie, bestimmt nach WHO-Kriterien. Die Teilnehmer berichteten von keinen früheren Imprägnierungen und hatten Partnerinnen ohne Fruchtbarkeitsprobleme. Patienten mit Erkrankungen und/oder Risikofaktoren, von denen bekannt ist, …
Reference Jannatifar R, Parivar K, Roodbari NH, Nasr-Esfahani MH. Effects of N-acetyl-cysteine ​​supplementation on sperm quality, chromatin integrity and levels of oxidative stress in infertile men. (Link removed). 2019;17(24). Study objective To determine the effects of supplementation with the antioxidant N-acetyl-cysteine ​​(NAC) on sperm quality, chromatin integrity and levels of oxidative stress in infertile men with abnormal semen parameters Design Three-month prospective, randomized, blinded clinical trial Participants Fifty men aged 25 to 40 years with Asthenoteratozoospermia, determined according to WHO criteria. Participants reported no previous impregnations and had partners without fertility problems. Patients with diseases and/or risk factors known to...

The antioxidant N-acetyl cysteine ​​improves sperm quality

Relation

Jannatifar R, Parivar K, Roodbari NH, Nasr-Esfahani MH. Effects of N-acetyl-cysteine ​​supplementation on sperm quality, chromatin integrity and levels of oxidative stress in infertile men. (Link removed). 2019;17(24).

Study objective

To determine the effects of supplementation with the antioxidant N-acetyl-cysteine ​​(NAC) on sperm quality, chromatin integrity and levels of oxidative stress in infertile men with abnormal semen parameters

Draft

Three-month prospective, randomized, blinded clinical trial

Participant

Fifty men aged 25 to 40 years with asthenoteratozoospermia determined according to WHO criteria. Participants reported no previous impregnations and had partners without fertility problems.

Patients with medical conditions and/or risk factors known to affect fertility (hormonal abnormalities, Klinefelter syndrome, varicocele, cryptorchidism, vasectomy, leukospermia, sperm antibodies, anatomical diseases, cancer, abnormal liver function, cigarette smoking, alcohol consumption, fever within 90 days after semen analysis) were excluded.

intervention

All participants received oral NAC supplementation of 600 mg daily for 3 months.

Study parameters assessed

Semen analysis was used to assess the following semen parameters: volume, sperm concentration, total motility, progressive motility, non-progressive motility, immotile sperm and abnormal morphology. Other data recorded included DNA fragmentation index, protamine deficiency levels, total antioxidant capacity (TAC), seminal malondialdehyde (MDA) levels and hormonal parameters including serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), testosterone and Prolactin. Assessments were conducted at baseline and 3 months.

Primary outcome measures

Results after 3 months were compared with those at baseline.

Key insights

After 3 months of NAC, significant improvements were noted in all semen parameters evaluated: volume (P=0.01), sperm concentration (P=0.02), total mobility (P=0.01), progressive motility (P=0.001), non-progressive mobility (P=0.01), immotile sperm (P=0.01) and abnormal morphology (P=0.001).

There were also significant reductions in the percentages of DNA fragmentation (P=0.001) and sperm with protamine deficiency (P=0.009). Oxidative stress levels improved from baseline, as evidenced by a decrease in MDA (P=0.01) and an increase in TAC (P=0.01). All hormonal parameters except prolactin showed statistically significant differences with decreases in FSH (P=0.01) and LH (P=0.04) and an increase in testosterone (P=0.01).

Practice implications

Male infertility accounts for a significant percentage of infertility cases, with a prevalence approximately equal to that of female infertility.1Multiple etiologies have been identified, including congenital anomalies, genetic inheritance, poor lifestyle, environmental influences, and iatrogenic conditions. If no cause is identified, a diagnosis of unexplained or idiopathic infertility is made.2While the terms “unexplained” and “idiopathic” are often used interchangeably, there is an important difference. Patients with true unexplained infertility are presented with a normal examination, including semen analysis. In contrast, those with idiopathic infertility have a normal workup, with the exception of suboptimal semen analysis findings.3The participants in this study were classified as the latter because poor motility and morphology were noted (asthenoteratozoospermia).

After 3 months of NAC, significant improvements were noted in all semen parameters evaluated.

Idiopathic male infertility is a current topic of interest among researchers, with particular emphasis on the relationship between oxidative stress and abnormal semen parameters. Oxidative stress occurs when there is an excess of reactive oxygen species (ROS) with insufficient antioxidant stores.4Under normal physiological conditions, sperm produce small amounts of ROS, which are required for prefertilization events (sperm hyperactivation, capacitation, acrosome reaction).5When ROS are present in excess, they impair spermatogenesis and threaten overall sperm quality.6Male idiopathic infertility often presents abnormalities in both ROS and antioxidants, suggesting that these individuals carry a greater burden of oxidative stress.4.7

In the present study, malondialdehyde (MDA) and total antioxidant capacity (TAC) served as biomarkers of oxidative stress. MDA is produced when ROS initiate lipid peroxidation of polyunsaturated fatty acids (PUFAs). Since the plasma membranes of spermatozoa contain PUFAs, MDA levels in semen serve as an indicator of lipid peroxidation.8Several studies have shown higher MDA levels in infertile men compared to fertile men.9.10These findings suggest that seminal lipid peroxidation and subsequent oxidative stress contribute to the seminal abnormalities associated with idiopathic male infertility.

While the mechanism by which oxidative stress alters normal sperm physiology is unknown, recent research has shown that it affects DNA integrity. DNA fragmentation index and protamine content are considered promising markers of DNA damage. They appear to predict fertility results better than semen analysis.11In 2019, Borges et al. statistically significant correlations between high levels of sperm DNA fragmentation and poor embryo development, low implantation rate and high miscarriage rate.12Participants in this study were initially thought to have unexplained infertility. However, almost 10% were found to have sperm abnormalities in the form of DNA fragmentation. These results suggest that DNA fragmentation is a valuable marker of sperm abnormalities for some men and could be used in combination with semen analysis to strengthen the diagnostic workup of male infertility.13

The connection between oxidative stress, DNA damage and poor sperm quality appears to be well documented. What is less clear is whether oxidative stress causes the DNA damage associated with semen abnormalities. The present study demonstrated remarkable improvements in oxidative stress, DNA integrity and sperm quality with antioxidant supplementation in the form of NAC. Other studies of antioxidant therapy for male infertility have reported similar results. However, rigorous studies showing clear clinical outcomes are limited, and most research concludes that further investigation is warranted.14In the meantime, it seems reasonable to target oxidative stress in the treatment of male idiopathic infertility, whether through antioxidant supplementation or otherwise. Current options for providers are extensive, with a growing list of antioxidant supplements including Selenium, L-Carnitine, Acetyl-L-Carnitine, Coenzyme Q10, Zinc, Folic Acid, Myo-Inositol, Vitamin E, Vitamin C, Docosahexaenoic Acid (DHA). , eicosapentaenoic acid (EPA) and now NAC.15-20

  1. Kumar N., Singh AK. Trends der männlichen Unfruchtbarkeit, eine wichtige Ursache für Unfruchtbarkeit: Eine Literaturübersicht. J Hum Reprod Sci. 2015;8(4):191–196.
  2. Anawalt B, Seite S. Ursachen männlicher Unfruchtbarkeit. (Link entfernt). Literaturübersicht aktuell bis Juni 2019. Zugriff am 14. Juli 2019.
  3. Kothandaraman N., Agarwal A., Abu-Elmagd M., Al-Quatani MH. Pathogene Landschaft der idiopathischen männlichen Unfruchtbarkeit: neue Einblicke in ihre regulatorischen Netzwerke. NPJ GenomMed. 2016;1:16023.
  4. Wagner H, Cheng JW, Ko EY. Rolle reaktiver Sauerstoffspezies bei männlicher Unfruchtbarkeit: Eine aktualisierte Literaturübersicht. Arab J Urol. 2018;16(1):35–43.
  5. Menschliche Spermien und Wechselwirkungen mit oxidativem Stress. In: Toor JS, Sikka SC. Oxidantien, Antioxidantien und Einfluss des oxidativen Status auf die männliche Fortpflanzung. Elsevier; 2019. https://www.sciencedirect.com/science/article/pii/B9780128125014000067. Abgerufen am 14. Juli 2019.
  6. Dutta S, Majzoub A, Agarwal A. Oxidativer Stress und Spermienfunktion: Eine systematische Überprüfung von Bewertung und Management. Arab J Urol. 2019;17(2):87-97.
  7. Alkan I, Simsek F, Haklar G, Kervancioğlu E, Ozveri H, Yalçin S. Produktion reaktiver Sauerstoffspezies durch die Spermien von Patienten mit idiopathischer Unfruchtbarkeit: Beziehung zu Samenplasma-Antioxidantien. J Urol. 1997;157:140–143.
  8. Agarwal A, Prabakaran SA. Mechanismus, Messung und Prävention von oxidativem Stress in der männlichen Fortpflanzungsphysiologie. Indian J Exp Biol. 2005;43(11):963-974.
  9. Oladosu OW, Biliaminu SA, Abdulazeez IM, Nwadike VU, Yusuff JO, Okesina AB. Bewertung des bahnbrechenden Biomarkers der Lipidperoxidation bei männlichen Partnern unfruchtbarer Paare am Lehrkrankenhaus der Universität von Ilorin in Nigeria. Niger Postgrad Med J. 2018;25(2):94-99.
  10. Subramanian V, Ravichandran A, Thiagarajan N, Govindarajan M, Dhandayuthapani S, Suresh S. Seminal reaktive Sauerstoffspezies und gesamte antioxidative Kapazität: Korrelationen mit Spermienparametern und Auswirkungen auf die männliche Unfruchtbarkeit. Clin Exp. Reprod. Med. 2018 Jun;45(2):88-93.
  11. Wright C, Milne S, Leeson H. Spermien-DNA-Schäden durch oxidativen Stress: modifizierbare klinische, Lebensstil- und Ernährungsfaktoren bei männlicher Unfruchtbarkeit. Reproduktion von Biomed Online. 2014 Jun;28(6):684-703.
  12. Borges E Jr, Zanetti BF, Setti AS, Braga DPAF, Provenza RR, Iaconelli A Jr. Spermien-DNA-Fragmentierung korreliert mit schlechter Embryonalentwicklung, geringerer Implantationsrate und höherer Fehlgeburtsrate in Reproduktionszyklen von Unfruchtbarkeit durch nicht-männliche Faktoren. Fruchtbar Steril. 2019;112(3):483-490.
  13. Keshteli SH, Farsi MM, Khafri S. Sollten wir Samenanalysen, DNA-Fragmentierung und hypoosmotische Schwellungstests gemeinsam durchführen? Int. J. Mol. Cell. Med. 2016;5(4):246–254.
  14. Showell MG, Mackenzie-Proctor R., Brown J., Yazdani A., Stankiewicz MT, Hart RJ. Antioxidantien für männliche Subfertilität. Cochrane Database Syst Rev. 2014;(12):CD007411.
  15. Buhling K, Schumacher A, Eulenburg CZ, Laakmann E. Einfluss der oralen Vitamin- und Mineralstoffergänzung auf die männliche Unfruchtbarkeit: eine Metaanalyse und systematische Überprüfung. Reproduktion von Biomed Online. 2019;39(2):269-279.
  16. B. Hosseini, M. Nourmohamadi, S. Hajipour et al. Die Wirkung von Omega-3-Fettsäuren, EPA und/oder DHA auf die männliche Unfruchtbarkeit: eine systematische Überprüfung und Metaanalyse. J Diät-Suppl. 2019;16(2):245-256.
  17. Busetto GM, Agarwal A, Virmani A, et al. Wirkung einer metabolischen und antioxidativen Supplementierung auf Spermienparameter bei Oligo-Astheno-Teratozoospermie, mit und ohne Varikozele: Eine doppelblinde, placebokontrollierte Studie. Andrologie. 2018;50(3).
  18. Cheng JB, Zhu J, Ni F, Jiang H. L-Carnitin kombiniert mit Coenzym Q10 bei idiopathischer Oligoasthenozoospermie: Eine doppelblinde, randomisierte, kontrollierte Studie. Zhonghua Nan Ke Xue. 2018;24(1):33-38.
  19. Condorelli RA, La Vignera S, Mongioì LM, et al. Myo-Inositol als männliches Fruchtbarkeitsmolekül: Beschleunigen Sie sie! Eur. Rev. Med. Pharmacol. Sci. 2017;21(2 Suppl):30-35.
  20. Kumalic SI, Pinter B. Review of Clinical Trials on Effects of Oral Antioxidants on basic sperm and other parameters in idiopathic oligoasthenoteratozoospermia. Biomed Res Int. 2014;2014:426951.